float-trip 2022-10-01 15:10:01 +00:00
commit e813c12852
6 changed files with 306 additions and 0 deletions

17
celeryconfig.py 100644
View File

@ -0,0 +1,17 @@
beat_schedule = {
"find-prompts": {"task": "tasks.find_prompts", "schedule": 60.0, "args": ()},
}
task_annotations = {
"tasks.post_reply": {"rate_limit": "5/m"},
"tasks.find_prompts": {"rate_limit": "1/m"},
}
task_default_queue = "api"
broker_url = ""
result_backend = ""
task_routes = {"tasks.generate_reply": {"queue": "gen"}}
worker_prefetch_multiplier = 1

89
client.py 100644
View File

@ -0,0 +1,89 @@
import requests
import sys
import os
import time
class DramaClient:
BASE_URL = "https://rdrama.net"
def __init__(self):
self.token = os.environ.get("RDRAMA_TOKEN", "")
self.last_processed_id = 2821161 # Most recent comment seen.
def get(self, endpoint):
print(endpoint)
time.sleep(5)
r = requests.get(
f"{self.BASE_URL}{endpoint}", headers={"Authorization": self.token}
)
if r.status_code != 200:
print("Error!", r, r.status_code, r.content)
sys.exit(1)
return r.json()["data"]
def post(self, endpoint, payload, files=[]):
print(endpoint)
time.sleep(5)
r = requests.post(
f"{self.BASE_URL}{endpoint}",
payload,
headers={"Authorization": self.token},
files=files,
)
if r.status_code != 200:
print("Error!", r, r.status_code, r.content)
sys.exit(1)
return r.json()
def fetch_new_comments(self):
comments = []
if self.last_processed_id is None:
comments += self.fetch_page(1)
else:
earliest_id = None
page = 1
# Fetch comments until we find the last one processed.
while earliest_id is None or earliest_id > self.last_processed_id:
page_comments = self.fetch_page(page)
earliest_id = min([c["id"] for c in page_comments])
comments += [
c for c in page_comments if c["id"] > self.last_processed_id
]
page += 1
if not comments:
return []
self.last_processed_id = max(c["id"] for c in comments)
# New comments may have pushed others to page n+1 while fetching.
deduped_comments = {c["id"]: c for c in comments}.values()
# Oldest first.
comments.reverse()
return comments
def fetch_page(self, page):
return self.get(f"/comments?page={page}")
def reply(self, parent_fullname, submission, body, image_path=None):
payload = {
"parent_fullname": parent_fullname,
"submission": submission,
"body": body,
}
files = []
if image_path:
filename = image_path.split("/")[-1]
files = {"file": (filename, open(image_path, "rb"), "image/webp")}
self.post("/comment", payload, files=files)

31
readme.md 100644
View File

@ -0,0 +1,31 @@
# Marseygen
Stable Diffusion bot with distributed inference.
# Usage
* Set up [InvokeAI](https://github.com/invoke-ai/InvokeAI) on the gen workers and activate the `ldm` environment
* Install rabbitmq and redis, add URLs to `celeryconfig.py`
* `git clone https://github.com/float-trip/marseygen`
* `pip install -r marseygen/requirements.txt`
* `mv marseygen/*.py InvokeAI && cd InvokeAI`
* Running the gen workers from this dir circumvents some Python import issues that I don't care to figure out right now
* Start the API worker
`celery -A tasks worker -B --concurrency 1 --loglevel=INFO`
* Start a gen worker for each GPU
```sh
export CUDA_VISIBLE_DEVICES=0,
export WORKER_HOST="user@gen_worker_ip"
export WORKER_SSH_PORT="22"
export WORKER_ID="unique_id"
celery -A tasks worker -Q gen -n unique_name -B --concurrency 1 --loglevel=INFO`
```

5
requirements.txt 100644
View File

@ -0,0 +1,5 @@
celery==5.2.7
celery_singleton==0.3.1
Pillow==9.2.0
pry.py==0.1.1
requests==2.27.1

140
tasks.py 100644
View File

@ -0,0 +1,140 @@
import os
import subprocess
import random
from celery import Celery, Task, chain
import time
import celeryconfig
from client import DramaClient
from utils import concat_images
app = Celery("tasks")
app.config_from_object(celeryconfig)
client = DramaClient()
generator = None
#
# API worker tasks
#
@app.task
def post_reply(context):
basename = os.path.basename(context["image_path"])
save_path = f"/fs/marseys/{basename}"
print(f"Copying {basename}")
# Copy image from remote machine.
subprocess.run(
[
"rsync",
"-a",
f"{context['worker_host']}:{context['image_path']}",
save_path,
"-e",
f"ssh -p {context['worker_ssh_port']}",
]
)
print(f"Replying for prompt {context['prompt']}")
client.reply(
context["parent_fullname"],
context["submission"],
f"`{context['prompt']}`",
save_path,
)
class FindPromptsTask(Task):
last_call = None
# Temp fix for comments being replied to multiple times.
queued_ids = set()
@app.task(base=FindPromptsTask)
def find_prompts():
if find_prompts.last_call is not None and time.time() - find_prompts.last_call < 60:
return
find_prompts.last_call = time.time()
print("Looking for prompts.")
comments = client.fetch_new_comments()
for comment in comments:
if comment["id"] in find_prompts.queued_ids:
continue
find_prompts.queued_ids.add(comment["id"])
reply_contexts = [
{
"parent_fullname": f"c_{comment['id']}",
"submission": comment["post_id"],
"prompt": line[4:],
}
for line in comment["body"].split("\n")
if line.startswith("!sd ")
]
# Max 5 prompts per comment.
reply_contexts = reply_contexts[:5]
for context in reply_contexts:
print(f"Queueing prompt `{context['prompt']}`.")
chain(
generate_reply.s(context).set(queue="gen"),
post_reply.s().set(queue="api"),
).apply_async()
#
# Generation worker tasks
#
class GenTask(Task):
_generator = None
@property
def generator(self):
if self._generator is None:
from ldm.generate import Generate
self._generator = Generate(sampler_name="k_euler_a")
self._generator.load_model()
print("Model loaded.")
return self._generator
@app.task(base=GenTask)
def generate_reply(context):
print(f"Generating `{context['prompt']}`.")
if not os.path.exists("out"):
os.makedirs("out")
results = generate_reply.generator.prompt2png(
context["prompt"], outdir=f"out/{os.environ['WORKER_ID']}", iterations=9
)
image_paths = [r[0] for r in results]
grid = concat_images(image_paths, size=(512, 512), shape=(3, 3))
grid_basename = f"{random.randrange(10**6, 10**7)}.webp"
if not os.path.exists("grid"):
os.makedirs("grid")
grid_path = f"grid/{grid_basename}"
grid.save(grid_path, "WEBP")
context["image_path"] = os.path.abspath(grid_path)
context["worker_host"] = os.environ["WORKER_HOST"]
context["worker_ssh_port"] = os.environ["WORKER_SSH_PORT"]
return context

24
utils.py 100644
View File

@ -0,0 +1,24 @@
from PIL import Image, ImageOps
#
# https://gist.github.com/njanakiev/1932e0a450df6d121c05069d5f7d7d6f
#
def concat_images(image_paths, size, shape=None):
# Open images and resize them
width, height = size
images = map(Image.open, image_paths)
images = [ImageOps.fit(image, size, Image.ANTIALIAS) for image in images]
# Create canvas for the final image with total size
shape = shape if shape else (1, len(images))
image_size = (width * shape[1], height * shape[0])
image = Image.new("RGB", image_size)
# Paste images into final image
for row in range(shape[0]):
for col in range(shape[1]):
offset = width * col, height * row
idx = row * shape[1] + col
image.paste(images[idx], offset)
return image