New Marseygen.
parent
e813c12852
commit
d9a9518f54
|
@ -1,17 +0,0 @@
|
|||
beat_schedule = {
|
||||
"find-prompts": {"task": "tasks.find_prompts", "schedule": 60.0, "args": ()},
|
||||
}
|
||||
|
||||
task_annotations = {
|
||||
"tasks.post_reply": {"rate_limit": "5/m"},
|
||||
"tasks.find_prompts": {"rate_limit": "1/m"},
|
||||
}
|
||||
|
||||
task_default_queue = "api"
|
||||
|
||||
broker_url = ""
|
||||
result_backend = ""
|
||||
|
||||
task_routes = {"tasks.generate_reply": {"queue": "gen"}}
|
||||
|
||||
worker_prefetch_multiplier = 1
|
89
client.py
89
client.py
|
@ -1,89 +0,0 @@
|
|||
import requests
|
||||
import sys
|
||||
import os
|
||||
import time
|
||||
|
||||
|
||||
class DramaClient:
|
||||
BASE_URL = "https://rdrama.net"
|
||||
|
||||
def __init__(self):
|
||||
self.token = os.environ.get("RDRAMA_TOKEN", "")
|
||||
self.last_processed_id = 2821161 # Most recent comment seen.
|
||||
|
||||
def get(self, endpoint):
|
||||
print(endpoint)
|
||||
time.sleep(5)
|
||||
|
||||
r = requests.get(
|
||||
f"{self.BASE_URL}{endpoint}", headers={"Authorization": self.token}
|
||||
)
|
||||
|
||||
if r.status_code != 200:
|
||||
print("Error!", r, r.status_code, r.content)
|
||||
sys.exit(1)
|
||||
|
||||
return r.json()["data"]
|
||||
|
||||
def post(self, endpoint, payload, files=[]):
|
||||
print(endpoint)
|
||||
time.sleep(5)
|
||||
|
||||
r = requests.post(
|
||||
f"{self.BASE_URL}{endpoint}",
|
||||
payload,
|
||||
headers={"Authorization": self.token},
|
||||
files=files,
|
||||
)
|
||||
|
||||
if r.status_code != 200:
|
||||
print("Error!", r, r.status_code, r.content)
|
||||
sys.exit(1)
|
||||
|
||||
return r.json()
|
||||
|
||||
def fetch_new_comments(self):
|
||||
comments = []
|
||||
if self.last_processed_id is None:
|
||||
comments += self.fetch_page(1)
|
||||
else:
|
||||
earliest_id = None
|
||||
page = 1
|
||||
# Fetch comments until we find the last one processed.
|
||||
while earliest_id is None or earliest_id > self.last_processed_id:
|
||||
page_comments = self.fetch_page(page)
|
||||
earliest_id = min([c["id"] for c in page_comments])
|
||||
comments += [
|
||||
c for c in page_comments if c["id"] > self.last_processed_id
|
||||
]
|
||||
page += 1
|
||||
|
||||
if not comments:
|
||||
return []
|
||||
|
||||
self.last_processed_id = max(c["id"] for c in comments)
|
||||
|
||||
# New comments may have pushed others to page n+1 while fetching.
|
||||
deduped_comments = {c["id"]: c for c in comments}.values()
|
||||
|
||||
# Oldest first.
|
||||
comments.reverse()
|
||||
|
||||
return comments
|
||||
|
||||
def fetch_page(self, page):
|
||||
return self.get(f"/comments?page={page}")
|
||||
|
||||
def reply(self, parent_fullname, submission, body, image_path=None):
|
||||
payload = {
|
||||
"parent_fullname": parent_fullname,
|
||||
"submission": submission,
|
||||
"body": body,
|
||||
}
|
||||
|
||||
files = []
|
||||
if image_path:
|
||||
filename = image_path.split("/")[-1]
|
||||
files = {"file": (filename, open(image_path, "rb"), "image/webp")}
|
||||
|
||||
self.post("/comment", payload, files=files)
|
|
@ -0,0 +1,16 @@
|
|||
import os
|
||||
|
||||
import yaml
|
||||
from sqlitedict import SqliteDict
|
||||
|
||||
current_dir = os.path.dirname(os.path.realpath(__file__))
|
||||
config_path = os.path.join(current_dir, "config.yaml")
|
||||
|
||||
|
||||
def load_config():
|
||||
with open(config_path, "r") as f:
|
||||
return yaml.safe_load(f)
|
||||
|
||||
|
||||
config = load_config()
|
||||
db = SqliteDict(f"{config['data_dir']}/db.sqlite", autocommit=True)
|
|
@ -0,0 +1,135 @@
|
|||
import aiohttp
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import sys
|
||||
import os
|
||||
import math
|
||||
import random
|
||||
import shelve
|
||||
import io
|
||||
|
||||
from aiohttp_retry import RetryClient, ExponentialRetry
|
||||
from collections import OrderedDict
|
||||
from data import config, db
|
||||
|
||||
import logging
|
||||
|
||||
logging.basicConfig(level=logging.WARNING)
|
||||
|
||||
def copy_file_obj(file_obj):
|
||||
# Read the contents of the original file
|
||||
content = file_obj.read()
|
||||
|
||||
# Reset the position of the original file in case it needs to be read again
|
||||
file_obj.seek(0)
|
||||
|
||||
# Create a new BytesIO object with the same content
|
||||
new_file_obj = io.BytesIO(content)
|
||||
|
||||
return new_file_obj
|
||||
|
||||
class DramaClient:
|
||||
BASE_URL = "https://rdrama.net"
|
||||
|
||||
def __init__(self, client=None):
|
||||
#self.client = client or RetryClient(retry_options=ExponentialRetry(attempts=5))
|
||||
self.client = client or aiohttp.ClientSession()
|
||||
self.max_retries = 5 # define a maximum number of retries
|
||||
|
||||
|
||||
#self.chud_phrase = asyncio.run(self.get("/@me")).get("chud_phrase", "")
|
||||
|
||||
async def get(self, endpoint):
|
||||
print("GET", endpoint)
|
||||
print(config["api_token"])
|
||||
|
||||
async with self.client.get(
|
||||
f"{self.BASE_URL}{endpoint}",
|
||||
headers={"Authorization": config["api_token"]},
|
||||
) as r:
|
||||
if r.status != 200:
|
||||
print("Error!", r, r.status, await r.text())
|
||||
sys.exit(1)
|
||||
|
||||
return await r.json()
|
||||
|
||||
async def post(self, endpoint, data=None, images=None):
|
||||
for attempt in range(self.max_retries):
|
||||
await asyncio.sleep(5)
|
||||
try:
|
||||
form_data = aiohttp.FormData()
|
||||
|
||||
if data is not None:
|
||||
for key, value in data.items():
|
||||
form_data.add_field(key, str(value))
|
||||
|
||||
if images is not None:
|
||||
for file in images:
|
||||
form_data.add_field('file', file, filename='image.webp', content_type='image/webp')
|
||||
|
||||
async with self.client.post(f"{self.BASE_URL}{endpoint}", data=form_data, headers={"Authorization": config["api_token"]}) as r:
|
||||
if r.status != 200:
|
||||
print("Error!", r, r.status, await r.text())
|
||||
raise Exception("HTTP error") # raise an exception to trigger the retry
|
||||
return await r.json()
|
||||
except Exception as e:
|
||||
if attempt < self.max_retries - 1: # if this wasn't the last attempt, continue to the next one
|
||||
continue
|
||||
else: # this was the last attempt, re-raise the exception
|
||||
print("Exception", data)
|
||||
print(e)
|
||||
raise e # this was the last attempt, re-raise the exception
|
||||
|
||||
async def fetch_new_comments(self):
|
||||
comments = []
|
||||
|
||||
earliest_id = math.inf
|
||||
page = 1
|
||||
|
||||
if "last_processed_id" not in db:
|
||||
page_comments = await self.fetch_page(1)
|
||||
db["last_processed_id"] = max(c["id"] for c in page_comments)
|
||||
db.commit()
|
||||
return []
|
||||
|
||||
# Fetch comments until we find the last one processed.
|
||||
while earliest_id > db["last_processed_id"]:
|
||||
page_comments = await self.fetch_page(page)
|
||||
|
||||
if len(page_comments) == 0:
|
||||
break
|
||||
|
||||
earliest_id = min([c["id"] for c in page_comments])
|
||||
comments += [c for c in page_comments if c["id"] > db["last_processed_id"]]
|
||||
|
||||
page += 1
|
||||
|
||||
if not comments:
|
||||
return []
|
||||
|
||||
db["last_processed_id"] = max(c["id"] for c in comments)
|
||||
db.commit()
|
||||
|
||||
# New comments may have pushed others to page n+1 while fetching.
|
||||
comments = {c["id"]: c for c in comments}.values()
|
||||
comments = list(OrderedDict((c['id'], c) for c in comments).values())
|
||||
|
||||
# Oldest first.
|
||||
comments.reverse()
|
||||
|
||||
return comments
|
||||
|
||||
async def fetch_page(self, page):
|
||||
return (await self.get(f"/comments?page={page}"))["data"]
|
||||
|
||||
async def reply(self, comment, body, images=None):
|
||||
#if self.chud_phrase and self.chud_phrase not in body:
|
||||
# body += f"\n{self.chud_phrase}"
|
||||
|
||||
data = {
|
||||
"parent_fullname": f"c_{comment['id']}",
|
||||
"body": f"{body}<sub><sub><sub><sub><sub>{random.randint(1, 1000000000)}",
|
||||
}
|
||||
|
||||
return await self.post("/comment", data=data, images=images)
|
|
@ -0,0 +1,29 @@
|
|||
import numpy as np
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
import base64
|
||||
|
||||
def decode_and_resize(image_string):
|
||||
img_data = base64.b64decode(image_string)
|
||||
img = Image.open(BytesIO(img_data))
|
||||
return img.resize((512, 512))
|
||||
|
||||
def combine_images(images):
|
||||
combined = Image.new('RGB', (1536, 1536)) # 3 * 512 = 1536
|
||||
|
||||
for i, img in enumerate(images):
|
||||
x = i % 3 * 512
|
||||
y = i // 3 * 512
|
||||
combined.paste(img, (x, y))
|
||||
|
||||
return combined
|
||||
|
||||
def create_grid(b64_images):
|
||||
# decode, resize, and combine images
|
||||
images = [decode_and_resize(img_str) for img_str in b64_images]
|
||||
combined = combine_images(images)
|
||||
|
||||
# convert combined image to byte stream for posting
|
||||
img_byte_arr = BytesIO()
|
||||
combined.save(img_byte_arr, format='WEBP')
|
||||
return img_byte_arr.getvalue()
|
|
@ -0,0 +1,120 @@
|
|||
import asyncio
|
||||
import aiohttp
|
||||
import json
|
||||
from itertools import cycle
|
||||
import re
|
||||
|
||||
import io
|
||||
from drama_client import DramaClient
|
||||
from data import config
|
||||
|
||||
from image_utils import create_grid
|
||||
|
||||
SERVICES = config["services"]
|
||||
|
||||
|
||||
async def gen_worker(session, task_queue, result_queue, service):
|
||||
while True:
|
||||
# Get a task from the task queue
|
||||
comment, prompt = await task_queue.get()
|
||||
|
||||
# Process the task
|
||||
headers = {
|
||||
'accept': 'application/json',
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
"sampler_name": "Euler a",
|
||||
"batch_size": 1,
|
||||
"n_iter": 3,
|
||||
"steps": 30,
|
||||
"cfg_scale": 7,
|
||||
"width": 1024,
|
||||
"height": 1024,
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True,
|
||||
"send_images": True,
|
||||
"save_images": False
|
||||
}
|
||||
|
||||
b64_images = []
|
||||
while len(b64_images) < 9:
|
||||
try:
|
||||
async with session.post(f"{service}sdapi/v1/txt2img", headers=headers, data=json.dumps(data)) as r:
|
||||
resp_json = await r.json()
|
||||
b64_images.extend(resp_json["images"])
|
||||
except aiohttp.client_exceptions.ContentTypeError:
|
||||
html_response = await r.text()
|
||||
with open(f"{config['data_dir']}/log.txt", "a") as f:
|
||||
f.write(html_response)
|
||||
raise
|
||||
|
||||
grid = create_grid(b64_images)
|
||||
|
||||
# Put the result in the result queue
|
||||
await result_queue.put((comment, prompt, grid))
|
||||
|
||||
# Indicate that the task is done
|
||||
task_queue.task_done()
|
||||
|
||||
|
||||
async def feed_worker(client, task_queue):
|
||||
while True:
|
||||
# Fetch new tasks
|
||||
comments = await client.fetch_new_comments()
|
||||
|
||||
# Add each task to the task queue
|
||||
for comment in comments:
|
||||
prompts = re.findall(r"^!sd (.*)$", comment["body"], re.MULTILINE)
|
||||
prompts = prompts[:5]
|
||||
for prompt in prompts:
|
||||
await task_queue.put((comment, prompt))
|
||||
|
||||
await asyncio.sleep(20)
|
||||
|
||||
|
||||
async def result_worker(client, result_queue):
|
||||
while True:
|
||||
# Get a result from the result queue
|
||||
comment, prompt, grid = await result_queue.get()
|
||||
|
||||
# Post the result
|
||||
await client.reply(comment, f"`{prompt}`", images=[grid])
|
||||
|
||||
# Indicate that the result has been processed
|
||||
result_queue.task_done()
|
||||
|
||||
await asyncio.sleep(10)
|
||||
|
||||
|
||||
async def main():
|
||||
client = DramaClient()
|
||||
|
||||
task_queue = asyncio.Queue() # used to pass tasks to the workers
|
||||
result_queue = asyncio.Queue() # used to pass results to the result worker
|
||||
|
||||
# Create the feed worker
|
||||
feed_worker_task = asyncio.create_task(feed_worker(client, task_queue))
|
||||
# Create the result worker to post the generated images
|
||||
result_worker_task = asyncio.create_task(result_worker(client, result_queue))
|
||||
|
||||
async with aiohttp.ClientSession() as session:
|
||||
# Create a worker for each Stable Diffusion service
|
||||
gen_workers = [
|
||||
asyncio.create_task(gen_worker(session, task_queue, result_queue, service))
|
||||
for service in SERVICES
|
||||
]
|
||||
|
||||
try:
|
||||
await asyncio.gather(feed_worker_task, *gen_workers, result_worker_task)
|
||||
except asyncio.CancelledError:
|
||||
# If the main() coroutine is cancelled, propagate the cancellation to all workers
|
||||
feed_worker_task.cancel()
|
||||
for worker in gen_workers:
|
||||
worker.cancel()
|
||||
result_worker_task.cancel()
|
||||
await asyncio.gather(feed_worker_task, *gen_workers, result_worker_task, return_exceptions=True) # ignore cancellation exceptions
|
||||
|
||||
|
||||
asyncio.run(main())
|
31
readme.md
31
readme.md
|
@ -1,31 +0,0 @@
|
|||
# Marseygen
|
||||
|
||||
Stable Diffusion bot with distributed inference.
|
||||
|
||||
# Usage
|
||||
|
||||
* Set up [InvokeAI](https://github.com/invoke-ai/InvokeAI) on the gen workers and activate the `ldm` environment
|
||||
|
||||
* Install rabbitmq and redis, add URLs to `celeryconfig.py`
|
||||
|
||||
* `git clone https://github.com/float-trip/marseygen`
|
||||
|
||||
* `pip install -r marseygen/requirements.txt`
|
||||
|
||||
* `mv marseygen/*.py InvokeAI && cd InvokeAI`
|
||||
* Running the gen workers from this dir circumvents some Python import issues that I don't care to figure out right now
|
||||
|
||||
* Start the API worker
|
||||
|
||||
`celery -A tasks worker -B --concurrency 1 --loglevel=INFO`
|
||||
|
||||
* Start a gen worker for each GPU
|
||||
|
||||
```sh
|
||||
export CUDA_VISIBLE_DEVICES=0,
|
||||
export WORKER_HOST="user@gen_worker_ip"
|
||||
export WORKER_SSH_PORT="22"
|
||||
export WORKER_ID="unique_id"
|
||||
celery -A tasks worker -Q gen -n unique_name -B --concurrency 1 --loglevel=INFO`
|
||||
```
|
||||
|
|
@ -1,5 +0,0 @@
|
|||
celery==5.2.7
|
||||
celery_singleton==0.3.1
|
||||
Pillow==9.2.0
|
||||
pry.py==0.1.1
|
||||
requests==2.27.1
|
140
tasks.py
140
tasks.py
|
@ -1,140 +0,0 @@
|
|||
import os
|
||||
import subprocess
|
||||
import random
|
||||
from celery import Celery, Task, chain
|
||||
import time
|
||||
import celeryconfig
|
||||
|
||||
from client import DramaClient
|
||||
from utils import concat_images
|
||||
|
||||
app = Celery("tasks")
|
||||
app.config_from_object(celeryconfig)
|
||||
|
||||
client = DramaClient()
|
||||
|
||||
generator = None
|
||||
|
||||
|
||||
#
|
||||
# API worker tasks
|
||||
#
|
||||
@app.task
|
||||
def post_reply(context):
|
||||
basename = os.path.basename(context["image_path"])
|
||||
save_path = f"/fs/marseys/{basename}"
|
||||
|
||||
print(f"Copying {basename}")
|
||||
|
||||
# Copy image from remote machine.
|
||||
subprocess.run(
|
||||
[
|
||||
"rsync",
|
||||
"-a",
|
||||
f"{context['worker_host']}:{context['image_path']}",
|
||||
save_path,
|
||||
"-e",
|
||||
f"ssh -p {context['worker_ssh_port']}",
|
||||
]
|
||||
)
|
||||
|
||||
print(f"Replying for prompt {context['prompt']}")
|
||||
|
||||
client.reply(
|
||||
context["parent_fullname"],
|
||||
context["submission"],
|
||||
f"`{context['prompt']}`",
|
||||
save_path,
|
||||
)
|
||||
|
||||
|
||||
class FindPromptsTask(Task):
|
||||
last_call = None
|
||||
|
||||
# Temp fix for comments being replied to multiple times.
|
||||
queued_ids = set()
|
||||
|
||||
|
||||
@app.task(base=FindPromptsTask)
|
||||
def find_prompts():
|
||||
if find_prompts.last_call is not None and time.time() - find_prompts.last_call < 60:
|
||||
return
|
||||
|
||||
find_prompts.last_call = time.time()
|
||||
|
||||
print("Looking for prompts.")
|
||||
comments = client.fetch_new_comments()
|
||||
|
||||
for comment in comments:
|
||||
if comment["id"] in find_prompts.queued_ids:
|
||||
continue
|
||||
|
||||
find_prompts.queued_ids.add(comment["id"])
|
||||
|
||||
reply_contexts = [
|
||||
{
|
||||
"parent_fullname": f"c_{comment['id']}",
|
||||
"submission": comment["post_id"],
|
||||
"prompt": line[4:],
|
||||
}
|
||||
for line in comment["body"].split("\n")
|
||||
if line.startswith("!sd ")
|
||||
]
|
||||
|
||||
# Max 5 prompts per comment.
|
||||
reply_contexts = reply_contexts[:5]
|
||||
|
||||
for context in reply_contexts:
|
||||
print(f"Queueing prompt `{context['prompt']}`.")
|
||||
chain(
|
||||
generate_reply.s(context).set(queue="gen"),
|
||||
post_reply.s().set(queue="api"),
|
||||
).apply_async()
|
||||
|
||||
|
||||
#
|
||||
# Generation worker tasks
|
||||
#
|
||||
class GenTask(Task):
|
||||
_generator = None
|
||||
|
||||
@property
|
||||
def generator(self):
|
||||
if self._generator is None:
|
||||
from ldm.generate import Generate
|
||||
|
||||
self._generator = Generate(sampler_name="k_euler_a")
|
||||
self._generator.load_model()
|
||||
|
||||
print("Model loaded.")
|
||||
|
||||
return self._generator
|
||||
|
||||
|
||||
@app.task(base=GenTask)
|
||||
def generate_reply(context):
|
||||
print(f"Generating `{context['prompt']}`.")
|
||||
|
||||
if not os.path.exists("out"):
|
||||
os.makedirs("out")
|
||||
|
||||
results = generate_reply.generator.prompt2png(
|
||||
context["prompt"], outdir=f"out/{os.environ['WORKER_ID']}", iterations=9
|
||||
)
|
||||
|
||||
image_paths = [r[0] for r in results]
|
||||
grid = concat_images(image_paths, size=(512, 512), shape=(3, 3))
|
||||
|
||||
grid_basename = f"{random.randrange(10**6, 10**7)}.webp"
|
||||
|
||||
if not os.path.exists("grid"):
|
||||
os.makedirs("grid")
|
||||
|
||||
grid_path = f"grid/{grid_basename}"
|
||||
grid.save(grid_path, "WEBP")
|
||||
|
||||
context["image_path"] = os.path.abspath(grid_path)
|
||||
context["worker_host"] = os.environ["WORKER_HOST"]
|
||||
context["worker_ssh_port"] = os.environ["WORKER_SSH_PORT"]
|
||||
|
||||
return context
|
24
utils.py
24
utils.py
|
@ -1,24 +0,0 @@
|
|||
from PIL import Image, ImageOps
|
||||
|
||||
#
|
||||
# https://gist.github.com/njanakiev/1932e0a450df6d121c05069d5f7d7d6f
|
||||
#
|
||||
def concat_images(image_paths, size, shape=None):
|
||||
# Open images and resize them
|
||||
width, height = size
|
||||
images = map(Image.open, image_paths)
|
||||
images = [ImageOps.fit(image, size, Image.ANTIALIAS) for image in images]
|
||||
|
||||
# Create canvas for the final image with total size
|
||||
shape = shape if shape else (1, len(images))
|
||||
image_size = (width * shape[1], height * shape[0])
|
||||
image = Image.new("RGB", image_size)
|
||||
|
||||
# Paste images into final image
|
||||
for row in range(shape[0]):
|
||||
for col in range(shape[1]):
|
||||
offset = width * col, height * row
|
||||
idx = row * shape[1] + col
|
||||
image.paste(images[idx], offset)
|
||||
|
||||
return image
|
Loading…
Reference in New Issue